Modulcode 1.	Modulbezeichnung 2.		Zuordnung 3.	
1811	Mathematische Methoden in der Mechanik		MA	
	Studiengang 4.	Allgemeines Bauingenieurwesen		
Stand 23.10.2017 Fakultät 5. Bauinger		Bauingenieurwesen und Konservi	erung/Restaurierung	

25.11		D CD I WILL I
Modulverantwortlich	(6.)	Prof. DrIng. Habeb Astour
Modulart	7.	WPF (Wahlpflichtfach)
Angebotshäufigkeit	8.	jährlich
Regelbelegung / Empf. Semester	9.	1. Semester (Sommersemester) / 1. Semester (Sommersemester)
Credits (ECTS)	10.	2
Leistungsnachweis	11.)	Klausur (90 Minuten) oder erfolgreiche Bearbeitung von Hausaufgaben
Unterrichtssprache	12.)	Deutsch
Voraussetzungen für dieses Modul	13.)	Keine
Modul ist Voraussetzung für	14.)	Keine
Moduldauer	15.	1 Semester
Notwendige Anmeldung	16.)	Nein
Verwendbarkeit des Moduls	17.)	Bauingenieurwesen

Lehrveranstaltung	Dozent/in			Workload			
18)	(19)	20.	(maximal)	Kurse	23.)	Präsenz	Selbst- studium 25.
1 Ingenieurmathematik	Prof. Astour	Seminar	30	1	2	30	30
Summe 2 30					30		
Workload für das Modul 26				60			

Qualifikationsziele 27.	Befähigung systematisch Probleme der Mechanik deformierbarer Körper in mathematische zu übertragen, diese unter Nutzung moderner mathematische und numerischer Methoden und Rechenhilfsmittel zu lösen und die gewonnenen Ergebnisse kritisch zu beurteilen.
	Mathematische Modellierung mechanischer Verformungen insbesondere über Tensoren und Differenzialgleichungen. Numerische und analytische Methoden:
Inhalte (28.)	 Eigenwerte und Eigenvektoren Methoden der Funktionentheorie Gewöhnliche Differentialgleichungen Partielle Differentialgleichungen und finite Elemente Anwendungsbeispiele

Vorleistungen und Modulprüfung	 Keine Vorleistung für die Modulprüfung erforderlich, Abschlussprüfung: erfolgreiche Bearbeitung von Hausaufgaben oder schriftliche Klausur Bewertung der Klausur mit Noten 1-5, Modulnote fließt entsprechend der Credits in die Gesamtnote ein.
Literatur (30)	 Schmidt, D.: Differentialrechnung für Funktionen mehrerer Variablen, Skript Nr.6 Version 2009/01, FH Erfurt Schmidt, D.: Integralrechnung für Funktionen mehrerer Variablen, Skript Nr. 7 Version 2009/01, FH Erfurt Schmidt, D.: Gewöhnliche Differentialgleichungen, Skript Nr. 8 Version 2009/01, FH Erfurt Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. Noordhoff International Publishing, Leiden, 1977 Merkel, M., Öchsner, A.: Eindimensionale Finite Elemente, Springer Verlag, 2010 Hahn, H. G.: Elastizitätstheorie: Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, Teubner Verlag