

1 Percolation

Percolation of pores media:

Darcy's Law

$$v = k_f * i$$

v	Flow rate	[m/s]
k_f	coefficient of permeability	[m/s]
i	h/d hydraulic gradient	[-]

Advanced linear filter law

$$v = k_f * (i_0 - i)$$

v	Flow rate	[m/s]
k_f	coefficient of permeability	[m/s]
i_0	Start gradient	[-]
i	h/d hydraulic gradient	[-]

2 Flow rate

Hagen-Poiseuilleschen Equation:

$$w_p = \frac{R^2}{4 \cdot \eta} \frac{dp}{l} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

w_p	Flow velocity	[m/s]
R	Radius of the pores	[m]
l	Length of the pores	[m]
r	velocity of the reaction	[m/s]
dp	difference of pressure	[N/m ²]
η	dyn. Viscosity of Gases	[N·s/m ²]

By integration over the complete cross section of the pores we get the following relation:

$$w_p = \frac{R^2}{8 \cdot \eta} \frac{dp}{l}$$

w_p	Flow velocity	[m/s]
R	Radius of the pores	[m]
l	Length of the pores	[m]
r	velocity of the reaction	[m/s]
dp	difference of pressure	[N/m ²]

η dyn. Viscosity of Gases [N·s/m²]

3 Equilibrium Concentration

Equilibrium concentration of harmful gas in scrubber liquid:

Henry- bzw. Dalton-Law

$$C_g = H C_L$$

C_g Concentration of one gas component in the gas phase [mg/m³]
 H Absorption Constant (Henry-Constant) [-]
 C_L Equilibrium concentration [mg/m³]

4 Diffusion

Mass Transport Diffusion:

Fick'sche Law:

$$n = -D \cdot \frac{dc}{dx}$$

n Density of the mass stream [mol/(m²·s)]
 D Diffusion coefficient [m²/s]

$\frac{dc}{dx}$ Concentration gradient in x-direction

The concentration gradient for gases is between:

$$D = 1 \text{ bis } 2 \cdot 10^{-5} \quad [\text{cm}^2/\text{s}]$$

5 Gas Conductivity

The basis is the DARVY equation transformed for compressible fluids:

$$K_0 = \frac{v_{f,N} * \eta * 1}{p_e - p_a} * \frac{2p_N}{p_e + p_a}$$

K_o	Permeability	$[m^2]$,
$v_{f,N}$	Pressure related to the normed density of the volume stream	$[m/s]$,
l	Length of the probe	$[m]$
p_e	Pressure at the frond end of the probe	$[Pa]$,
p_a	Pressure at the end of the probe	$[Pa]$,
p_N	Norm pressure	$[Pa]$
η	dynamic Viscosity	$[Pa \times s]$.