Modulcode (1	Modulbezeich	nung	2.	Zuordnung	3.
	Cloud Computing (CC)				
MAI1040	Studiengang	4.	Master Angewandte Informatik		
	Fakultät	5.	Gebäudetechnik und Informatik	(

Modulverantwortlich	6.	Prof. DrIng. Steffen Avemarg
Modulart	7.	Pflichtmodul
Angebotshäufigkeit	8.	SS
Regelbelegung / Empf. Semester	9.	MA1 (MA 2 bei Immatrikulation im WS)
Credits (ECTS)	10.	5 CP
Leistungsnachweis	11.	SL (N)
Unterrichtssprache	12.)	Deutsch, Englisch
Voraussetzungen für dieses Modul	13.)	
Modul ist Voraussetzung für	14.)	-
Moduldauer	15.)	1 Semester
Notwendige Anmeldung	16.)	-
Verwendbarkeit des Moduls	17)	-

	hrveranstaltung Dozent/in Art		Art	Teilnehmer	Anzahl	SWS	Workload	
(18.)	19.	20.	(maximal)	Gruppen (22)	23.	Präsenz 24	Selbst- studium
1	Cloud Computing	Avemarg	V	15	1	2	30	15
2	Cloud Computing	Avemarg	Ü	15	1	1	15	65
					Summe	3	45	80
	Workload für das Modul 26 125					25		

Qualifikationsziele 27)	 Die Studierenden können Eigenschaften, Chancen und Risiken von Cloud-basierten Systemen benennen und erklären sowie die Besonderheiten im Vergleich zu klassischen Systemen erläutern Systeme und Frameworks im Bereich des Cloud Computing benennen und diese gemäß ihren Stärken sinnvoll einsetzen komplexe, Cloud-basierte Softwaresysteme mit mobilen Komponenten konzipieren und erfolgreich umsetzen Schnittstellen zwischen verteilten Systemen definieren und implementieren verschiedene Kommunikationsprotokolle mit deren Eigenschaften erläutern und sinnvoll in der Praxis einsetzen Cloud-basierte Anwendungen in automatisierten Prozessen bauen, testen und ausrollen die Aufgaben im Rahmen von DevOps benennen und erläutern sowie diese in einem eigenen Projekt erfolgreich zur Anwendung bringen
Inhalte 28.	 Cloud Computing als Schlüsseltechnologie für moderne, skalierbare und agile Softwaresysteme Tools & Frameworks wie Docker, Kubernetes, Quarkus Querschnittskonzepte wie Distributed Tracing, Monitoring, Logging & Security Architekturen von Cloud-basierten Systemen, u.a. Microservices & Serverless Spezifikation und Umsetzung von Schnittstellen zwischen verteilten Systembestandteilen Kommunikationsprotokolle und -architekturen (u.a. Synchron/Asynchron, Client/Server, Message-driven) Integration von Dritt- und Legacy-Systemen Konzeption und Umsetzung eines komplexen Anwendungssystems im Unternehmensumfeld
Vorleistungen und Modulprüfung	 Teamprojekt mit 2 bis 4 Studierende 3 Präsentation im Laufe des Semesters zum aktuellen Stand des Projektes Die Note setzt sich wie folgt zusammen: 60% Sourcecode 10% Tests 10% Präsentationen 10% Code-Dokumentation 10% Allgemeine Dokumentation
Literatur 30)	 Kofler M., Docker: Das Praxisbuch für Entwickler und DevOps-Teams, Rheinwerk Computing 2021 Richardson C., Microservices Patterns, Manning 2019 Newmann S., Vom Monolithen zu Microservices: Patterns, um bestehende Systeme Schritt für Schritt umzugestalten, O'Reilly 2020 Martin R.C., Clean Architecture, Prentice Hall 2018 Spichale K., API-Design, dpunkt.verlag 2019 Shkuro Y., Mastering Distributed Tracing, Packt 2019 Hightower K. et al., Kubernetes – Eine kompakte Einführung, dpunkt.verlag 2018