Modulcode (1.	Modulbezeichnung	2.	Zuordnung 3.
	Echtzeitbetriebssysteme (EBS)		
MAI2540	Studiengang 4.	Master Angewandte Informatik	
	Fakultät 5.	Gebäudetechnik und Informatik	(

Modulverantwortlich	6.	Prof. DrIng. Kay Gürtzig
Modulart	7.	Wahl
Angebotshäufigkeit	8.	SS
Regelbelegung / Empf. Semester	9.	MA1 (MA2 bei Immatrikulation im WS)
Credits (ECTS)	10.)	5 CP
Leistungsnachweis	11.	SL (N)
Unterrichtssprache	12.)	Deutsch, Englisch
Voraussetzungen für dieses Modul	13.)	Kenntnisse und Kompetenzen entsprechend Modul BAI- 0106: Betriebssysteme 1
Modul ist Voraussetzung für	14.)	-
Moduldauer	15.)	1 Semester
Notwendige Anmeldung	16.)	-
Verwendbarkeit des Moduls	17.)	-

Lehrveranstaltung		Dozent/in	Art	Teilnehmer	Anzahl	SWS	Workload	
(1	8)	19)	20.	(maximal)	Gruppen (22)	23.	Präsenz	Selbst- studium
1	Echtzeit- Betriebssysteme	Gürtzig	V	15	1	1	15	20
2	Echtzeit- Betriebssysteme	Gürtzig	Ü	15	1	2	30	60
					Summe	3	45	80
	Workload für das Modul				26.	125		

Qualifikationsziele 27)	 Die Studierenden können die speziellen Anforderungen an den Echtzeitbetrieb benennen, mit eigenen Worten beschreiben und an Beispielen erläutern; die grundlegenden Verfahren erläutern, die zur Echtzeitfähigkeit von Betriebssystemen führen; gegebene praxisnahe Problemstellungen auf ihre Echtzeiterfordernisse und sicherheitskritische Faktoren analysieren und Schlussfolgerungen für die Betriebssoftware ableiten; Grundbausteine eines minimalen Echtzeitkerns algorithmisch formulieren und in C programmtechnisch nachbilden; 	
Inhalte (28)	 Begriffe Echtzeitsystem und Echtzeitbetriebssystem (RTOS); Grundkonzepte von Echtzeitsystemen und Anforderungen des Echtzeitbetriebs; Herausforderungen beim Aufbau von Echtzeitsystemen; Echtzeit-Scheduling-Strategien; Standard-Echtzeit-APIs: POSIX-RT; Die (Nicht-)Verwendbarkeit von Standard-Betriebssystemen für Echtzeitaufgaben, Echtzeit-Erweiterungen (z. B. RT-PREEMPT); Sicherheitsstandard nach SIL3; Zeitsynchronisation und andere Probleme in verteilten Echtzeitumgebungen; Ausgewählte verbreitete Echtzeitbetriebssysteme (FreeRTOS, RTAI, QNX, VxWorks, LynxOS, RT-Linux); Eingabe-/Ausgabe-Schnittstellen (seriell, GPIO, SPI, I²C) Analoge und industrielle Ein-/Ausgabe Verifikation, Validierung und Leistungsbewertung von Echtzeitsystemen 	
Vorleistungen und Modulprüfung	Vorleistungen: • keine Modulprüfung: • 75 % schriftliche Belegarbeit als Einzelarbeit oder Gruppenarbeit von 2 Studierenden • 25 % mündliche Präsentation (Vortrag) zum Beleg	
Literatur 30.	 Hermann Kopetz: Real-Time Systems. Design Principles of Distributed Embedded Systems. – 2nd ed. – Springer, 201 W.A. Halang, H. Unger (Hrsg.): Industrie 4.0 und Echtzeit Echtzeit 2014 (Fachtagung des FA Echtzeitsysteme der Gund VDE 20./21. Nov. 2014). – Berlin, Heidelberg: Springe Vieweg, 2014 Juliane T. Benra, Wolfgang A. Halang: Software-Entwicklung 	