Modulcode 1.	Modulbezeichnung	2.	Zuordnung 3.
	Robotik (ROB)		
MAI2560	Studiengang 4.	Master Angewandte Informatik	
	Fakultät 5.	Gebäudetechnik und Informatik	(

Modulverantwortlich	6.	Prof. DrIng. Oksana Arnold
Modulart (7.		Wahl
Angebotshäufigkeit 8		SS
Regelbelegung / Empf. Semester	9.	MA2 (MA1 bei Immatrikulation im WS)
Credits (ECTS)	10.	5CP
Leistungsnachweis	11.	Benotete Studienleistungen (studienbegleitend)
Unterrichtssprache (12		Deutsch/ z.T. Englisch
Voraussetzungen für dieses Modul	(13)	Bachelor of Science; Anwendung von Modellierungsmethoden; Algorithmen zur Lösung von Aufgabenklassen; Programmieren
Modul ist Voraussetzung für	14.)	keine
Moduldauer	15.	ein Semester (1/2 Studienjahr)
Notwendige Anmeldung	16.	keine
Verwendbarkeit des Moduls	17.	Informatik & technische Studiengänge, in denen Industrie 4.0 und Autonomik relevant ist

Lehrveranstaltung	Dozent/in			SWS	Workload		
18)	19.	20.	(maximal)	Gruppen (22)	23.	Präsenz	Selbst- studium
1 Robotik	Arnold	S	12	6	4	60	65
Summe					4	60	65
Workload für das Modul 26					PM: 125		

Qualifikationsziele 27)	Der ständige Umgang mit neuen Herausforderungen nötigt viele Unternehmen höchst flexibel und schnell auf Kundenwünsche einzugehen und individuelle Produkte im Rahmen einer Serienfertigung zu erstellen. Dazu sind robuste, aber einfach zu steuernde Systeme nötig, die sehr komplexe Prozesse bewältigen und sicher Aufgaben lösen müssen. Intelligente autonome Systeme sollen den zunehmenden Bedarf bzgl. Automatisierungsgrad und Assistenz decken. Am Beispiel des hmunoiden Roboters Nao sollen praxisnah die damit verbundenen Herausforderungen in Themenkomplexen analysiert und diskutiert werden, sowie Methoden und Techniken erlernt, algorithmisch umgesetzt und deren Einsatzfähigkeiten getestet werden. Die Studierenden kennen und verstehen, Autonome Agentenarchitekturen, Regelungs- und Steuerungskonzepte sowie Sensoren und Aktoren. Sie sind in der Lage, Signalflüsse zu modellieren, Umweltparameter zu erfassen, zu verarbeiten und in adäquate Roboteraktionen umzusetzen, Störpotenziale zu erfassen sowie geeignete Maßnahmen zur Minimierung des Störeinflusses zu ergreifen, unterschiedliche Techniken der Interaktion zu nutzen.
Inhalte 28	 Aufgabengebiete der Robotik Nao-Arbeitsumgebung, Hardware- und Software Nutzung verfügbarer Module, Bibliotheken, Konzepte und Programmierstile, Fehlerhandhabung Kinematik und Motionpath-Planung ComputerVision Objekt- /Gesichtserkennung sowie Objekt-/Gesichtsverfolgung Spracherkennung und Dialogkomponente Orientierung und Bewegung im Raum, Kollisionsvermeidung Spezifikation, Modellierung, Zerlegung und Umsetzung von konkreten Herausforderungen
Vorleistungen und Modulprüfung	Keine Vorleistungen Die Modulprüfung setzt sich zusammen aus: • 50% Projekt zu einem Lernverfahren • 50% Klausur (90 min) in der letzten Semesterveranstaltung
Literatur 30.	 Kisung SEO: Using NAO: Introduction to interactive humanoid robots. Aldebaran Robotics, Paris 2013. Shuuji KAJITA, Hirohisa HIRUKAWA, Kensuke HARADA, Kazuhito YOKOI: Introduction to Humanoid Robotics. Springer Tracts in Advanced Robotics 101, Springer-Verlag Berlin Heidelberg 2014. Bruno SICILIANO, Oussama KHATIB: Handbook of Robotics. Springer Verlag, Heidelberg, New York 2008. Bruce G. BATCHELOR (Ed.): Machine Vision Handbook. Springer-Verlag, Heidelberg New York 2012. Weitere Literatur in der Veranstaltung