Module code (1.)	Module description 2.		Category 3.
MBI 1530	Numerics		Int. Master
Stand: 06.10.2021	Degree 4.	Sustainable Engineering of Infrastructure	
	Faculty 5.	Civil Engineering and Conservation	on / Restoration

Module supervisor	6.	Prof. DrIng. Fritz D. Vogdt
Type of module	7.	P (obligatory)
Frequency	8.	Annually
Standard semester of study	9.	2 nd semester
Credits (ECTS)	10.	5 ETCS
Assessment	11.	SL (practical work with report)
Language of instruction	12.)	English
Admission requirements	13.)	-
Module is a requirement for	14.)	-
Module duration	15.	1 semester
Mandatory registration	16.	
Applicability of module	17.	Civil Engineering

C	ourse	Lecturer	Type	No. of	No. of	Contact	Workload	
1	8.)	19.)	20.	students (max.)	courses per week	hours per week	Face-to- face	Self-study (25.)
1	Numerics	F.D. Vogdt	Seminar	25	1	4	60	90
					Total	4	60	90
	Workload for the module (26.)				150			

Learning objectives	27.)	After successful participation in the module, students have knowledge of computer-aided numerical methods for the simulation of problems in structural mechanics as well as the ability to select and apply specific software.
Course contents	28.)	 The following topics will be covered in the module: systems of linear equations eigenvalue problems finite-difference method for the solution of boundary value problems finite element theory of deformations, stresses, strength and fracture systems of linear equations numerical interpolation, differentiation and integration

Preliminary exam requirements and assessment (29.)	Term paper and presentation
Literature 30.	 Hermann Friedrich und Frank Pietschmann: Numerische Methoden: Ein Lehr- und Übungsbuch, De Gruyter, 2010 Klaus-Jürgen Bathe: Finite-Elemente-Methoden, Springer, 2002 Klaus Knothe, Heribert Wessels: Finite Elemente: Eine Einführung für Ingenieure, Springer, 4. Aufl. 2008 User manuals, brief instructions and ample applications from software manufacturers