Module code (1.)	Module description	Category (3.)		
MBI 2540	Hydraulic Engineering in Urban Environment		Int. Master	
Stand: 29.06.2023	Degree (4.)	Sustainable Engineering of Infrastructure		
	Faculty (5.)	Civil Engineering and Conservation	on / Restoration	

Module supervisor (6.)	Prof. DrIng. Volker Spork
Type of module7.	P (obligatory)
Frequency (8.)	Annually
Standard semester of study (9.)	2nd semester
Credits (ECTS)	5 ETCS
Assessment (11.)	Written examination
Language of instruction (12)	English
Admission requirements (13)	Basic knowledge of hydromechanics and hydraulic engineering
Module is a requirement for (14.)	-
Module duration (15.)	1 semester
Mandatory registration (16.)	No
Applicability of module	Civil Engineering

Course		Lecturer	Type	No. of students	No. of courses	Contact hours per	Workload	
	8.)	(19.)	(20.)	(max.)	per week	week 23.	Face-to- face	Self-study
1	Hydraulic Engineering in Urban Environment	Prof. Dr. Spork	Lecture	25	1	2	30	40
2	Hydraulic Engineering in Urban Environment	Prof. Dr. Spork	Tutorial	25	1	2	30	50
		-			Total	4	60	90
	Workload for the module						150	

Learning objectives	(27.)	Having successfully completed the module, students can plan and dimension river training works, structures with watercourse passability and flood protection measures in urban areas. Furthermore, they can select 1D and 2D hydrodynamic numerical models for the quantitative assessment of hydraulic-hydrological changes in running water bodies caused by construction works and then apply them in the planning process.	
Course contents	(28.)	 Function and use of watercourses in urban areas River training works objectives of river training onature-orientated watercourse development 	

	o urban acology in the planning process	
	 urban ecology in the planning process watercourse maintenance 	
	Watercourse passability	
	 bottom ramps and slopes 	
	 fish passes (pool and slot passes) 	
	 Flood protection 	
	\circ flood protection \circ flood prevention	
	 technical flood control 	
	 flood control reservoirs 	
	 flood bypasses 	
	 polders 	
	 concrete flood walls 	
	 dikes 	
	Hydrological Modeling	
	 Hydrological Wodering HEC-HMS project work, flood rooting 	
	 Hydrodynamic numerical modeling 	
	• mathematical description of multidimensional flow	
	phenomena	
	 numerical solution methods 	
	 modeling process 	
	 1D hydrodynamic-numerical modeling, 	
	HEC-RAS project work	
	 2D hydrodynamic-numerical modeling, 	
	HYDRO AS-2D or HEC-RAS or BASEMENT	
	project work	
	• Legal aspects (e.g. international water law, EU-Water	
	Framework Directive, Flood Risk Management Directive)	
	Trainework Directive, Thood Kisk Management Directive)	
	Final written examination	
Preliminary exam	 Assessed using grades 1-5 	
requirements and (29.)	• Module grade is included in the overall grade in	
assessment	proportion to the number of credits earned	
	• Patt, H.: Hochwasser-Handbuch, Springer Verlag	
	• Patt, H. et al.: Naturnaher Wasserbau, Springer Verlag	
	Heimerl, St. (ed.): Biologische Durchgängigkeit von	
Literature (30.)	Fließgewässern, Springer Verlag	
	• Guidelines of the DWA (or DVWK), BWK	
	• EU guidelines and legal texts	
	• Software manuals	