Modulcode 1.	Modulbezeichnung	2.)	Zuordnung 3.	
	Embedded Systems 2 (ES2)			
BAI0621	Studiengang 4.	Bachelor Angewandte Informatik/ Bachelor Angewandte Informatik DUAL		
	Fakultät 5.	Gebäudetechnik und Informatik	(

Modulverantwortlich	6.	Prof. DrIng. Volker Zerbe
Modulart	7.	Pflichtmodul der Vertiefung Ingenieurinformatik
Angebotshäufigkeit	8.	WS
Regelbelegung / Empf. Semester	9.	BA5
Credits (ECTS)	10.	5 CP
Leistungsnachweis	11.	SL (N) + PL (N)
Unterrichtssprache	12.	Deutsch
Voraussetzungen für dieses Modul	13.	BAI0421: Embedded Systems 1
Modul ist Voraussetzung für	14.)	BAI0721: Embedded Systems 3 BAI0722: Automation Anwendung
Moduldauer	15.	1 Semester
Notwendige Anmeldung	16.	-
Verwendbarkeit des Moduls	17.	-

I	_ehrveranstaltung	Dozent/in	Art	Teilnehmer	Anzahl	SWS	Wor	kload
(18.)	19)	20.	(maximal)	Gruppen (22)	23.	Präsenz	Selbst- studium
1	Sensortechnik	Zerbe	V	25	1	1	15	15
2	Sensortechnik	Zerbe	Ü	25	1	1	15	15
3	Bussysteme	Schorcht	V	25	1	1	15	15
4	Bussysteme	Schorcht	Ü	25	1	1	15	20
					Summe	4	60	65
				Workload für	das Modul	26.	1	25

Qualifikationsziele 27)	 bie Studierenden kennen den Aufbau und die Funktionsweise von Sensoren. verstehen die grundlegenden technischen Prinzipien zur Umwandlung physikalischer Größen in elektrische Signale. kennen die Möglichkeiten der Anwendung dieser Prinzipien für konkrete Anwendungen und Messaufgaben. kennen Applikationen der Sensorik in der Gebäudetechnik. Die Studierenden erwerben einen umfassenden Überblick über verbreitete Bussysteme in den verschiedenen technischen Anwendungsgebieten zur Übertragung von Sensordaten. verstehen die allgemeinen Aufgaben sowie den grundlegenden Aufbau und die Funktionsweise von Bussystemen. kennen Eigenschaften, Topologien, Datenformate und Arbeitsweise sowie der Komponenten konkreter Bussysteme der Anwendungsgebiete Gebäudetechnik, Kraftfahrzeugtechnik (Automotive) und Automatisierungstechnik. können vorhandene Schnittstellen nutzen, um in eigenen Anwendungen den Zugriff auf das Bussystem bzw. Knoten am Bussystem zu integrieren.
Inhalte 28.	 Sensortechnik Grundlagen Messtechnik/Messwerterfassung/Messfehler mathematisch/physikalische Grundlagen der Sensortechnik Sensorprinzipien Signalwandlung nichtelektrisch/elektrisch Sensorik in der Gebäudetechnik Bussysteme Grundlagen, Kommunikationsebenen, Busarchitekturen, Busmanagement, Anwendungsprotokolle Zeit-Synchronisation in Echtzeitumgebungen Koppelelemente (Bridges, Router, Gateways) Ausgewählte Bussysteme Gebäudetechnik (LON, KNX/EIB, [Wireless] M-Bus, LCN, BACnet) Kraftfahrzeugtechnik (CAN, LIN, TTP, TTCAN, FlexRay, MOST) Automatisierungstechnik (Profibus, Interbus, AS-Interface, EtherCAT, CANopen)
Vorleistungen und Modulprüfung	Vorleistungen: • Erfolgreiche Durchführung Laborversuch Bussysteme Modulprüfung: • 50 % Testat über 90 min Bussysteme semesterbegleitend • 50 % mündliche Prüfung über 30 min Sensortechnik im PZR

Literatur 300	 Schmidt, Wolf-Dieter: Sensorschaltungstechnik, 3. überarb. Aufl. Würzburg: Vogel, 2007 Schanz, Günther Werner: Sensoren, Fühler der Messtechnik: ein Handbuch der Messwertaufnahme für den Praktiker. Heidelberg: Hüthig, 1988 Kleger, Raymond: Sensorik für Praktiker. Berlin: VDEVerlag, 1998 Hoffmann, Jörg; Adunka, Franz: Taschenbuch der Messtechnik. München: Fachbuchverl. Leipzig im CarlHanser-Verl., 2007 Zimmermann, Werner; Schmidgall, Ralf: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards. Wiesbaden: Vieweg, 2007 Rausch, Mathias: FlexRay: Grundlagen, Funktionsweise, Anwendung. München [u.a.]: Hanser, 2008 Schnell, Gerhard; Wiedemann, Bernhard: Bussysteme in der Automatisierungs- und Prozesstechnik: Grundlagen, Systeme und Trends der industriellen Kommunikation, Vieweg, 2008 Schürmann, Bernd: Grundlagen der Rechnerkommunikation: Technische Realisierung von Bussystemen und Rechnernetzen; für alle Studiengänge: Informatik, Elektrotechnik und Informationstechnik. Wiesbaden: Vieweg, 2004 Gruhler, Gerhard: Feldbusse und Geräte-Kommunikationssysteme: Praktisches Know-How mit Vergleichsmöglichkeiten. Poing: Franzis, 2001